Pervasive domestication of defective prophages by bacteria.
نویسندگان
چکیده
Integrated phages (prophages) are major contributors to the diversity of bacterial gene repertoires. Domestication of their components is thought to have endowed bacteria with molecular systems involved in secretion, defense, warfare, and gene transfer. However, the rates and mechanisms of domestication remain unknown. We used comparative genomics to study the evolution of prophages within the bacterial genome. We identified over 300 vertically inherited prophages within enterobacterial genomes. Some of these elements are very old and might predate the split between Escherichia coli and Salmonella enterica. The size distribution of prophage elements is bimodal, suggestive of rapid prophage inactivation followed by much slower genetic degradation. Accordingly, we observed a pervasive pattern of systematic counterselection of nonsynonymous mutations in prophage genes. Importantly, such patterns of purifying selection are observed not only on accessory regions but also in core phage genes, such as those encoding structural and lysis components. This suggests that bacterial hosts select for phage-associated functions. Several of these conserved prophages have gene repertoires compatible with described functions of adaptive prophage-derived elements such as bacteriocins, killer particles, gene transfer agents, or satellite prophages. We suggest that bacteria frequently domesticate their prophages. Most such domesticated elements end up deleted from the bacterial genome because they are replaced by analogous functions carried by new prophages. This puts the bacterial genome in a state of continuous flux of acquisition and loss of phage-derived adaptive genes.
منابع مشابه
The Defective Prophage Pool of Escherichia coli O157: Prophage–Prophage Interactions Potentiate Horizontal Transfer of Virulence Determinants
Bacteriophages are major genetic factors promoting horizontal gene transfer (HGT) between bacteria. Their roles in dynamic bacterial genome evolution have been increasingly highlighted by the fact that many sequenced bacterial genomes contain multiple prophages carrying a wide range of genes. Enterohemorrhagic Escherichia coli O157 is the most striking case. A sequenced strain (O157 Sakai) poss...
متن کاملAltered Distribution of RNA Polymerase Lacking the Omega Subunit within the Prophages along the Escherichia coli K-12 Genome
The RNA polymerase (RNAP) of Escherichia coli K-12 is a complex enzyme consisting of the core enzyme with the subunit structure α2ββ'ω and one of the σ subunits with promoter recognition properties. The smallest subunit, omega (the rpoZ gene product), participates in subunit assembly by supporting the folding of the largest subunit, β', but its functional role remains unsolved except for its in...
متن کاملEvolutionary Genomics of a Temperate Bacteriophage in an Obligate Intracellular Bacteria (Wolbachia)
Genome evolution of bacteria is usually influenced by ecology, such that bacteria with a free-living stage have large genomes and high rates of horizontal gene transfer, while obligate intracellular bacteria have small genomes with typically low amounts of gene exchange. However, recent studies indicate that obligate intracellular species that host-switch frequently harbor agents of horizontal ...
متن کاملImportance of prophages to evolution and virulence of bacterial pathogens
Bacteriophages, or simply phages, are viruses infecting bacteria. With an estimated 10 ( 31) particles in the biosphere, phages outnumber bacteria by a factor of at least 10 and not surprisingly, they influence the evolution of most bacterial species, sometimes in unexpected ways. "Temperate" phages have the ability to integrate into the chromosome of their host upon infection, where they can r...
متن کاملCryptic prophages help bacteria cope with adverse environments
Phages are the most abundant entity in the biosphere and outnumber bacteria by a factor of 10. Phage DNA may also constitute 20% of bacterial genomes; however, its role is ill defined. Here, we explore the impact of cryptic prophages on cell physiology by precisely deleting all nine prophage elements (166 kbp) using Escherichia coli. We find that cryptic prophages contribute significantly to re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 33 شماره
صفحات -
تاریخ انتشار 2014